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Chemical functionalization of low-dimensional materials such as nanotubes, nanowires and graphene leads to profound
changes in their properties and is essential for solubilizing them in common solvents. Covalent attachment of functional
groups is generally achieved at defect sites, which facilitate electron transfer. Here, we describe a simple and general
method for covalent functionalization of two-dimensional transition metal dichalcogenide nanosheets (MoS2, WS2 and
MoSe2), which does not rely on defect engineering. The functionalization reaction is instead facilitated by electron transfer
between the electron-rich metallic 1T phase and an organohalide reactant, resulting in functional groups that are covalently
attached to the chalcogen atoms of the transition metal dichalcogenide. The attachment of functional groups leads to
dramatic changes in the optoelectronic properties of the material. For example, we show that it renders the metallic 1T
phase semiconducting, and gives it strong and tunable photoluminescence and gate modulation in field-effect transistors.

Semiconducting single-layered transition metal dichalcogenides
(TMDs) are interesting because they are direct-bandgap
materials that have relatively good mobility values (up to

∼100 cm2 V−1 s−1)1. Recent work has also demonstrated that they
possess interesting catalytic properties for hydrogen evolution2–5.
Chemical modification can further enhance the versatility of two-
dimensional TMDs, for example, improving their solubility in
common solvents. Ataca et al.6 have theoretically investigated the
functionalization of TMDs, but experimental reports of covalent
functionalization remain scarce.

Nanosheets of TMDs can be obtained either by exfoliation
(mechanical or chemical) of their bulk form, or by chemical
vapour deposition7. Chemical exfoliation via butyllithium intercala-
tion results in crystal phases with disparate electronic properties in
the nanosheets8,9. For example, the trigonal prismatic semiconduct-
ing 2H phase is thermodynamically stable in MX2 (where M =Mo
or W and X = Se or S) TMDs from Group VI elements. However,
butyllithium intercalation leads to partial conversion of the crystal
structure from the 2H phase to the octahedral 1T metallic
phase8,10,11 due to electron transfer from the butyl group of the
butyllithium to the TMD sheets (Fig. 1a,b).

Covalent functionalization of low-dimensional carbon-based
materials at edges or defects present on the surface has been an
active field of research over the past 20 years12–14. Several routes
based on reactions of electrophiles with carbon atoms have also
been reported15–17. In particular, functionalization has been achieved
through reductive alkylation by adding a halide reagent to n-doped
carbon nanotubes and graphene15,18,19. This approach has been
extended recently to two-dimensional inorganic germanane
nanosheets by Jiang and co-authors20. In contrast, current schemes
for functionalization of TMDs consist of ligands interacting with
unsaturated metal atoms at the edges or defects on the basal plane21,22.

Results and discussion
Synthesis of functionalized TMD nanosheets. In this Article, we
describe covalent functionalization of chemically exfoliated25,26

MoS2, WS2 and MoSe2 nanosheets containing a large fraction of
1T phase by reacting with organohalide solutions (2-iodo-
acetamide or iodomethane) (Supplementary Materials and
Methods and Fig. 1a,b). Although we discuss the results from
organohalide functionalized samples in the following, we have
also carried out functionalization with aryl diazonium salts to
demonstrate the versatility of our method. The diazonium
salt functionalization results are described in Supplementary
Section ‘Functionalization with 4-bromobenzenediazonium
tetrafluoroborate’. The functionalization reactions with
2-iodoacetamide or iodomethane were performed on uniformly
dispersed 1T-phase single-layer nanosheets3,10 (Supplementary
Fig. 1). These reactions lead to functionalized TMD nanosheets,
referred to as Fct-MX2 (Fig. 1c). We also performed control
experiments by treating the nanosheets in 0.15 M iodine in
acetonitrile, a reaction in which charge is suppressed via mild
oxidation and chemical functionalization is not induced
(Fig. 1d)23. The products from these reactions were thoroughly
washed with 2-propanol, ethanol and water, and were analysed
with X-ray photoelectron spectroscopy (XPS). No signal from
iodine was detected in the XPS survey spectra of functionalized
and iodine-treated TMDs, indicating that unreacted starting
reagents (2-iodoacetamide, iodomethane or iodine) were not
present in the samples (Supplementary Fig. 3) after
functionalization and control reactions. The zeta potential of
functionalized nanosheet suspensions also increased significantly
after the reaction due to suppression of excess charge and the
attachment of functional groups (Supplementary Table 1).
Chemically exfoliated nanosheets of TMDs containing a large
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fraction of 1T phase are charged, as indicated by zeta-potential
measurements23,24. Heising and colleagues have estimated an
excess charge of ∼0.25 per MoS2 nanosheet23, which allows the
nanosheets to remain in suspension. The 2H phase of the TMDs
is not charged and 2H nanosheets cannot therefore be stabilized
in common solvents.

Characterization. Chemically exfoliated nanosheets contain a
mixture of 1T and 2H phases. The phase concentration and degree
of functionalization were estimated by XPS. The 1T-phase
concentrations were found to be ∼65%, ∼75% and ∼65% for
MoS2, WS2 and MoSe2, respectively. Functionalization of the TMD
nanosheets after reaction with 2-iodoacetamide was confirmed by
observing signals from N1s and C1s regions in XPS at ∼400 eV
and ∼288.4 eV, respectively (Fig. 2 and Supplementary Fig. 4). XPS
analyses also revealed that the 1T- and 2H-phase concentrations
are preserved after the functionalization reaction. We have
estimated the degree of functionalization by calculating the ratio of
the amount of nitrogen (from the amide) to metal atoms.
According to XPS, the ratio of functional groups per MX2 reaches
29 at%, 25 at% and 32 at% for Fct-MoS2, Fct-WS2 and Fct-MoSe2,
respectively. If the excess charge on the nanosheets is ∼25%, as
reported by Heising23, then these concentrations suggest that our
functionalization reactions are highly efficient. Furthermore, the
XPS analyses did not reveal the formation of MOx (M =Mo or W)
or XOx (X = S or Se) (Fig. 2 and Supplementary Fig. 5). It can be
seen in Fig. 2 (right-hand spectra) that the S2p (panels a,b) and
Se3d (panel c) peaks become slightly more pronounced relative to
the spectra from reference samples after functionalization,
suggesting that attachment of the functional group occurs on the S
or Se (Fig. 2). Thermogravimetric analysis (TGA) revealed that the

degree of functionalization (measured from weight losses) was 20 at
%, 19 at% and 25 at% for Fct-MoS2, Fct-WS2 and Fct-MoSe2,
respectively, in reasonably good agreement with the XPS results
(Supplementary Fig. 6).

Attenuated total reflectance Fourier transform infrared (ATR-
FTIR) spectroscopy was used to confirm covalent functionalization
of the TMD nanosheets. For ATR-FTIR we used iodomethane to
functionalize the nanosheets with methyl groups because of their
higher infrared sensitivity. The resulting spectra are less complicated,
so the peaks can be clearly identified (Supplementary Methods). The
ATR-FTIR spectra of the methyl-functionalized TMD nanosheets are
shown in Fig. 3. It can be seen that the methyl‐functionalized MoS2
displays strong signals at 1,295 cm−1 and 943 cm−1, which are
attributed to the methyl deformation and rockingmodes, respectively,
originating from S–CH3. No signal from unreacted iodomethane was
detected. The S–C stretching at 700 cm−1 (refs 27,28) is also clearly
observed. Similar signatures are also seen for WS2, with peaks at
1,293 cm−1 and 947 cm−1 for the -CH3 bands and 811 cm−1 and
700 cm−1 for the S–C bands. Interestingly, similar peaks are down-
shifted by ∼50 cm−1 in the case of MoSe2. Methyl deformation and
rocking modes are found at 1,246 cm−1 and 890 cm−1, respectively,
whereas Se–C stretching is visible at 605 cm−1 (refs 27–29). ATR-
FTIR analysis strongly suggests that the attachment of the functional
groups is located on the chalcogen atoms. Raman spectroscopy
provides additional evidence of covalent functionalization with a
split of the out-of-plane A1G mode, most probably due to the
presence of functional groups attached to the chalcogen atoms
(Supplementary Fig. 9).

To further elucidate the location of functionalization sites on the
TMD nanosheets, we performed solid-state 13C CP-MAS NMR
(cross-polarization magic angle spinning NMR) spectroscopy on
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Figure 1 | Schematic of functionalization scheme. a, Side view of the 2H and 1T phases. b, The 2H phase of TMDs is converted to the 1T phase via lithiation
using butyllithium (BuLi), and the 1T phase is negatively charged. n− indicates the excess charges carried by the exfoliated 1T-phase nanosheets. c, The
nanosheets are functionalized using 2-iodoacetamide or iodomethane (R-I) solution. d, The charge on the nanosheets can also be quenched by reacting with
iodine, with no covalent functionalization.
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the acetamide-functionalized nanosheets (Fig. 4). Because of the
intrinsic parameter settings of the 13C CP-MAS experiment, only
qualitative data were obtained regarding the different chemical
environments experienced by the different classes of carbon atoms
in the material(s). The spectra were referenced with an external ada-
mantane standard in which the peak at higher chemical shift was set
at 38.43 ppm. As shown in Fig. 4a, 2-iodoacetamide shows charac-
teristic chemical shifts (δ) corresponding to carbonyl and aliphatic
carbons (α-C in this case) at 178.3 ppm and 4.6 ppm (shown in
green and blue, respectively). This spectrum, when compared to
the acetamide spectrum (Supplementary Fig. 10), showed a signifi-
cant difference in the aliphatic region due to the difference in the
electronic environments of the α-C. As well as the difference in

chemical shifts, the broadness for 2-iodoacetamide can also be
associated with the heteroatom (in this case iodine) connected to
α-C. In the case of Fct-MoS2 (Fig. 4b), peaks corresponding to
both α-C and carbonyl were shifted from those of the 2-iodoaceta-
mide precursor. The downfield shift of α-C (δ 49.6 ppm) compared
to 2-iodoacetamide clearly indicates the presence of a different
carbon-heteroatom linkage, stemming from covalent functionaliza-
tion. Although the slight difference in chemical shift values of
Fct-MoS2 and Fct-WS2 (Fig. 4d) indicates different functionalized
materials, it also reveals that, despite having two different metals,
it is the primary point of attachment (in this case S, as evident
from XPS results) on the surface that dictates the chemical shifts.
This effect becomes prominent when S (as the primary point of
attachment) is replaced by Se (as in the case of Fct-MoSe2,
Fig. 4e). In that case, the chemical shift corresponding to the α-C
moved significantly to an up-field value (δ 35.2 ppm) compared
to either Fct-MoS2 or Fct-WS2. The high degree of functionalization
(>20 at%) combined with evidence of C–S or C–Se bonding indi-
cates that the attachment occurs mostly at the surface of the
nanosheets and not at the edges or defects alone.

Additional control experiments were performed to confirm
that functionalization is not mediated by defects. First, we replaced
TMD nanosheets containing the electron-rich 1T phase with
nanosheets containing only the 2H phase. According to
XPS spectroscopy, no N1s peak from the amide group was
detected on the 2H-phase TMD nanosheets. We also mixed
acetamide only with the 1T phase of TMDs, and again no reaction
was observed according to XPS, confirming the role of the iodide
(most likely as a leaving group) in the grafting reaction
(Supplementary Fig. 12).

Optical properties. For this phase of the study we used electronic-
grade single-layer 2H MoS2 nanosheets grown by chemical vapour
deposition (CVD) (see Supplementary Section ‘Materials and
methods’ for growth conditions). It can be seen from Fig. 5a that
the CVD nanosheets are highly photoluminescent30,31, with a
photoluminescence energy of ∼1.8 eV, consistent with a direct-
bandgap transition at the K-point in the band structure of
monolayered 2H MoS2 (ref. 31). In contrast, when the same
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Figure 2 | XPS spectra of functionalized TMDs. a–c, High-resolution spectra
from the N1s and Mo3p (left-hand spectra), and either S2p or Se3d (right-
hand spectra) regions from MoS2 (a), WS2 (b) and MoSe2 (c). Chemically
exfoliated TMDs contain a mixture of 1T and 2H phases. The XPS peak of
the 1T phase is downshifted by ∼0.9 eV relative to the 2H peak10. The
overall signal for each TMD material is shown in black, signals from the
C–S/Se bond, 1T and 2H phases are shown in green, blue and red,
respectively. The presence of the N1s signal at ∼400 eV for acetamide-
functionalized TMDs confirms attachment of the amide functional groups on
the surface of the nanosheets. Peaks associated with the 1T phase, S–C and
Se–C components become more pronounced after functionalization, as
indicated by arrows.
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Figure 3 | ATR-FTIR spectra of methyl-functionalized TMDs. a–d, Spectra
of iodomethane (green, a), functionalized 1T MoS2 (red, b), functionalized 1T
WS2 (blue, c) and functionalized 1T MoSe2 (orange, d) showing stretching
(ν) deformation (δ) and rocking (ρ) modes. The -CH3 and Se–C vibration
modes are notably shifted for MoSe2 compared with modes for MoS2 and
WS2, indicating that covalent attachment of functional groups occurs via the
chalcogen atoms.
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monolayered CVDMoS2 is converted to the 1T phase via butyllithium
treatment (see Methods), photoluminescence is completely
suppressed10. Interestingly, intense photoluminescence reappears
after functionalization of the monolayered 1T-phase CVD
nanosheet. The photoluminescence in the functionalized 1T-phase
sample consists of two primary peaks: one at ∼1.9 eV, which is the
shifted MoS2 peak, and the other at ∼1.6 eV, which may be
attributed to band-structure modification due to covalent
functionalization. Recently, such a peak has been correlated to
bound excitons resulting from defects in monolayer TMDs32. This
is supported by the fact that the intensity of the 1.6 eV
photoluminescence peak can be tuned by varying the concentration
of the functional groups on the nanosheets, as shown in Fig. 5b. We
also confirmed the metallic to semiconducting conversion of the 1T
phase after functionalization by measuring the field-effect transistor
(FET) properties of the functionalized 1T phase (see Supplementary
Section ‘Field effect transistors’ for details).

Functionalization of the 2H phase. We have shown above that the
2H phase cannot be functionalized directly. It is, however, possible to
functionalize the 1T phase and relax it to the functionalized 2H phase
through annealing. Functionalized 1T-phase MoS2 was annealed up
to 300 °C to progressively restore the 2H phase (Supplementary
Materials and Methods). Upon annealing at 300 °C, Fct-MoS2
transforms to 100% semiconducting 2H phase (Supplementary Figs
14–17). 13C CP-MAS NMR results also suggest the presence of
functional groups on the 2H MoS2 nanosheets, albeit with a large
decrease in the signal-to-noise ratio (Fig. 4c). A similar amount of
functionalization was obtained for 2H WS2 (Supplementary
Fig. 14). Signatures of the S–CH3 and S–C bonds can also be
clearly identified in the ATR-FTIR spectra of the functionalized 2H
phase (Supplementary Fig. 13).

Conclusions
We have reported a general scheme for covalent functionalization of
TMDs. The reaction, based on the addition of amide and methyl
moieties (from organoiodide precursors), was successfully applied
to sulfur- and selenium-based TMDs. Functional groups were
grafted directly onto the chalcogen layer of nanosheet surfaces.
The extent of functionalization was up to 30 at% relative to the tran-
sition metal content, equivalent to a density of ∼3 × 1014 molecules
cm−2 on the basal plane. After functionalization, the properties of
the 1T phase are profoundly altered from metallic to semiconduct-
ing, giving rise to strong and tunable photoluminescence. The
anchoring of functional groups on the nanosheets should open
new routes for further chemical modification of TMD nanosheets.

Methods
TMD exfoliation. Caution: n-butyllithium is highly pyrophoric. MoS2, WS2 and
MoSe2 were exfoliated following the method reported in refs 3 and 10. Briefly, bulk
powder of TMDs (0.3 g) was mixed with n-butyllithium (3 ml, 1.6 M in hexane) and
heated at reflux under argon for 48 h. The mixture was then filtered under argon and
washed with hexane to remove excess butyllithium. The intercalated powder was
exfoliated in water at 1 mg ml−1, sonicated for 1 h to facilitate the exfoliation, and
centrifuged to remove lithium compounds as well as the non-exfoliated materials.
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Figure 5 | Photoluminescence from functionalized 1T-phase MoS2.
a, Photoluminescence spectra obtained from single-layer MoS2 grown by
CVD (2H phase), from the metallic 1T phase and from the functionalized 1T
phase. A strong photoluminescence peak at ∼1.8 eV is observed for the 2H
phase, consistent with single-layer 2H MoS2, whereas photoluminescence is
quenched after conversion to the metallic 1T phase. The functionalized 1T
phase exhibits strong photoluminescence, characterized by two bands at
∼1.9 eV and ∼1.6 eV. Inset: a typical CVD-grown monolayer triangular
nanosheet on which the photoluminescence spectra were measured.
Scale bar, 25 µm. b, Modulation of photoluminescence peak intensity with
increasing amount of functionalization: blue, 0% Fct; green, ∼5% Fct;
orange, ∼10% Fct; purple, ∼20% Fct; red, ∼30% Fct. Photoluminescence
peaks are normalized to the Raman peak of silicon at 520 cm−1.
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constant in curves b and d suggests that bonding is through the sulfur
atoms in MoS2 and WS2.
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Iodine treatment of exfoliated TMDs. Typically, 15 mg exfoliated TMDs was
transferred into acetonitrile. The nanosheets were treated with 15 ml of 0.15 M
iodine solution in acetonitrile. After 5 days of reaction at room temperature TMDs
were washed thoroughly with acetonitrile (6 × 50 ml), 2-propanol (3 × 50 ml),
ethanol (3 × 50 ml) and water (3 × 50 ml).

Functionalization of TMDs. 2-Iodoacetamide was added to the water solution of
exfoliated TMDs with tenfold excess. After 5 days of reaction at room temperature,
the materials were washed with 2-propanol (3 × 50 ml), ethanol (3 × 50 ml) and
water (3 × 50 ml).

Functionalization of single-layer MoS2 nanosheets grown by CVD. Single-layer
MoS2 flakes grown by CVD on SiO2 were first converted to the 1T phase. In a glove
box, butyllithium (1.6 M in hexane) was dropped on the wafer. After 24 h of
reaction, the wafer was washed with hexane (4 × 2 ml) and dried. 0.1 M of
2-iodoacetamide in dimethylsulfoxide was then added to the MoS2 flakes and the
reaction was carried out for 48 h. Finally, excess 2-iodoacetamide solution was
removed and the wafer was washed with dimethylsulfoxide (DMSO, 2 × 5 ml),
THF (2 × 5 ml), 2-propanol (2 × 5 ml), ethanol (2 × 5 ml) and water (2 × 5 ml).

XPS measurements were performed with a Thermo Scientific K-Alpha
spectrometer with a detection limit of 0.1 at%. All spectra were taken using a Al-Kα
microfocused monochromatized source (1,486.6 eV) with a resolution of 0.6 eV and
a spot size of 400 µm. Photoluminescence spectra were obtained using a Renishaw
1000 system operating at 514 nm (2.41 eV).

ATR FTIR spectra were obtained on a PerkinElmer Spectrum One FTIR
spectrometer equipped with a universal diamond ATR reflection top-plate.
Spectra were collected by pressing the sample onto a diamond crystal with a pressure
setting of 90 on the DuraScope. Each spectrum consisted of 16 spectra co-added
accumulated between 4,000 cm−1 and 560 cm−1 with a spectral resolution of 4 cm−1.
Iodine-treated TMDs were used as background.

The solid-state 13C (100.64 MHz) NMR spectra were acquired on a Bruker 400
MHz NMR spectrometer (with a Bruker 3.2 mm bore HXY probe operating in HX
mode) at 298 K. The samples were prepared mixing cal-SBA-15 with the samples
followed by careful packing of the mixture into a 3.2 mm zirconia rotor. For 13C CP-
MAS NMR experiments, a 10.0 kHz spin rate, 5 s recycle delay, 2 ms contact time,
π/2 pulse width of 5 µs (at 66 W) and at least 64 K scans using ‘Spinal 64’ 1H
decoupling method were used. The spectra were referenced based on an external
adamatane standard in which the peak at higher chemical shift was set at 38.43 ppm.
The spectra were processed in a Bruker Topspin (v 3.2) using conventional
techniques, and a 50 Hz line broadening window function was applied to all spectra.
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